2,272 research outputs found

    Bodies in Conflict: From Gettysburg to Iraq

    Full text link
    The exhibition Bodies in Conflict: From Gettysburg to Iraq not only conveys an ambitious geographic and historical range, but also reflects the sensitivity, ambition, and thoughtfulness of its curator, Laura Bergin ’17. In examining how the human figure is represented in prints and photographs of modern war and political conflict, Laura considers how journalistic photographs, artistic interpretations, and other visual documentation of conflict and its aftermath compare between wars and across historical periods. Specific objects include a print and photographs from the Civil War, propaganda posters from World Wars I and II, photographs and a protest poster from the Vietnam War, and a large-scale photograph of a reconstructed journalistic image of Saddam Hussein’s palace by Iraqi-born contemporary artist Wafaa Bilal. Taken together, the works in the exhibition make a profound political and humanitarian statement about suffering, heroism, death, compassion, and appeals to nationalism throughout wars over the last 150 years. [excerpt]https://cupola.gettysburg.edu/artcatalogs/1018/thumbnail.jp

    Chemical modeling of the L1498 and L1517B prestellar cores: CO and HCO+ depletion

    Full text link
    Prestellar cores exhibit a strong chemical differentiation, which is mainly caused by the freeze-out of molecules onto the grain surfaces. Understanding this chemical structure is important, because molecular lines are often used as probes to constrain the core physical properties. Here we present new observations and analysis of the C18O (1-0) and H13CO+ (1-0) line emission in the L1498 and L1517B prestellar cores, located in the Taurus-Auriga molecular complex. We model these observations with a detailed chemistry network coupled to a radiative transfer code. Our model successfully reproduces the observed C18O (1-0) emission for a chemical age of a few 10^5 years. On the other hand, the observed H13CO+ (1-0) is reproduced only if cosmic-ray desorption by secondary photons is included, and if the grains have grown to a bigger size than average ISM grains in the core interior. This grain growth is consistent with the infrared scattered light ("coreshine") detected in these two objects, and is found to increase the CO abundance in the core interior by about a factor four. According to our model, CO is depleted by about 2-3 orders of magnitude in the core center.Comment: Accepted for publication in A&

    Soluble acidic species in air and snow at Summit, Greenland

    Get PDF
    Simultaneous measurements of the concentrations of soluble acidic species in the gas, aerosol and snow phases at Summit, Greenland were made during summer 1993. Mean concentrations of gas phase HCOOH, CH3COOH, and HNO3 (49±28, 32±17 and 0.9±0.6 nmol m−3 STP, respectively) exceeded the concentrations of aerosol-associated HCOO−, CH3COO−, and NO3−by 1–3 orders of magnitude. On average, SO2 concentrations (0.9±0.6 nmol m−3 STP) were approximately 1/3 those of aerosol SO4=, but this ratio varied widely due largely to changes in the concentration of aerosol SO4=. Concentrations of aerosol SO4= plus SO2 consistently exceeded the sum of aerosol NO3− plus HNO3, yet NO3− was 3–20 times as abundant as SO4=in surface snow. Gas phase concentrations of HCOOH and CH3COOH at Summit were unexpectedly as large as those previously reported for several high latitude continental sites. However, carboxylate concentrations in snow were lower than those of SO4=. Our observation of post-depositional loss of these carboxylic acids within hours after a snowfall must partially explain the low concentrations found in snow. The relative abundance of soluble acids in summer snow at Summit was opposite of that in the overlying atmosphere. Our results highlight the need for improved understanding of the processes controlling transfer of soluble atmospheric species between air and snow

    Detection of Structure in Infrared-Dark Clouds with Spitzer: Characterizing Star Formation in the Molecular Ring

    Get PDF
    We have conducted a survey of a sample of infrared-dark clouds (IRDCs) with the Spitzer Space Telescope in order to explore their mass distribution. We present a method for tracing mass using dust absorption against the bright Galactic background at 8 microns. The IRDCs in this sample are comprised of tens of clumps, ranging in sizes from 0.02 to 0.3 pc in diameter and masses from 0.5 to a few 10 Msun, the broadest dynamic range in any clump mass spectrum study to date. Structure with this range in scales confirms that IRDCs are the the precursors to stellar clusters in an early phase of fragmentation. Young stars are distributed in the vicinity of the IRDCs, but the clumps are typically not associated with stars and appear pre-stellar in nature. We find an IRDC clump mass spectrum with a slope of 1.76 +/- 0.05 for masses from 30 to 3000 Msun. This slope is consistent with numerous studies, culled from a variety of observational techniques, of massive star formation regions and is close to the mass function of Galactic stellar clusters and star clusters in other galaxies. We assert that the shape of the mass function is an intrinsic and universal feature of massive star formation regions, that are the birth sites of stellar clusters. As these clouds evolve and their constituent clumps fragment, the mass spectrum will steepen and eventually assume the form of the core mass function that is observed locally.Comment: Accepted to ApJ. 37 pages, 24 figures. Full-resolution versions of the figures are available at http://www.astro.lsa.umich.edu/~seragan/ftp/irdc_figs

    Relationship between continuous aerosol measurements and firn core chemistry over a 10-year period at the South Pole

    Get PDF
    Before ice core chemistry can be used to estimate past atmospheric chemistry it is necessary to establish an unambiguous link between concentrations of chemical species in the air and snow. For the first time a continuous long-term record of aerosol properties (aerosol light scattering coefficient, σsp, and Ångström exponent, Ă„) at the South Pole are compared with the chemical record from a high resolution firn core (∌10 samples per year) covering the period from 1981 to 1991. Seasonal signals in Ă„, associated with winter minima due to coarse mode seasalt and summer maxima due to accumulation mode sulfate aerosol, are reflected in the firn core SO42−/Na+ concentration ratio. Summertime ratios of σsp and aerosol optical depth, τ to corresponding firn core sulfur concentrations are determined and the ‘calibrations’ are applied to sulfur concentrations in snowpits from a previous study. Results show that σsp estimates from snowpit sulfur concentrations are in agreement with atmospheric measurements while τ estimates are significantly different, which is likely due to the lack of understanding of the processes that mix surface air with air aloft

    Simultaneous measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations

    Get PDF
    The sources, sinks, and overall importance of watersoluble organic carbon (WSOC) in the atmosphere are not well understood. Although the primary historical focus has been on particulate WSOC (WSOCP), here we also present results obtained using a newly developed technique that additionally measures gas-phase water-soluble organic carbon (WSOCG). These first-of-their-kind measurements show that WSOCG can often be more than ten times larger than WSOCP at both urban and remote locations. The average fraction of WSOC residing in the gas phase (fg = WSOCG/(WSOCG + WSOCP)) at five various field sites ranged from 0.64 to 0.93, implying significant differences in WSOC phase partitioning between locations. At Houston, TX, and Summit, Greenland, a repeatable diurnal pattern was observed, with minimum values for fg occurring at night. These trends likely are due, at least in part, to temperature and/or relative humidity related gas-to-particle partitioning. These coincident measurements of WSOC in both the gas and particle phases indicate that a relatively large reservoir of water-soluble organic mass is not taken into account by measurements focused only on WSOCP. In addition, a significant amount of WSOCG is available to form WSOCP or enter cloud droplets depending on the chemical and physical properties of the droplets and/or aerosols present. Citation: Anderson, C., J. E. Dibb, R. J. Griffin, and M. H. Bergin (2008), Simultaneous measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations, Geophys. Res. Lett., 35, L13706, doi:10.1029/2008GL033966

    What Effects Do Public Relations Actions Have on Labor Disputes? A Look at Corporate Campaigns

    Get PDF
    Strikes were once considered an effective “go to” weapon in the labor movement. As union density has declined, so has the frequency and effectiveness of strikes. Strikes were once a tried and true tactic for labor unions to force employers to make concessions at the bargaining table. However over the past twenty-five years strikes have become a somewhat risky gamble with uncertain, often disastrous results. This paper examines the new role of public relations campaigns that labor unions employ in bargaining as it relates to work stoppages. What, if any, pressures do these “corporate campaigns” exert on employers during work stoppages? Do they help labor unions further their objectives? Do they force concessions in order to avoid a strike or to quickly end a strike

    Laser Ablation Synthesis of Energetic Graphitic Coated Aluminum Nanoparticles

    Get PDF
    This poster presents a research initiative in collaboration with the US Army Research Lab (ARL) to synthesize carbon-coated aluminum (Al) nanoparticles (NPs) as energetic materials via laser ablation in organic solutions. Nanomaterials have gained widespread attention recently from an array of scientists and engineers for their desired physical and chemical properties believed to be a product of their high ratio of surface area to volume, thus making them favorable for a wide variety of applications. Specifically, here Al NPs are favored for their energetic characteristics and usually employed as solid-state propellants. However, it is challenging and unsafe to preserve pristine Al NPs without any unwanted surface oxidation in ambient conditions, which in turn passivates and also retards their energetic activities. Therefore, a facile technique is proposed to synthesize Al NPs encapsulated in graphitic shells to prevent the unwanted surface oxidation. This research focuses on the laser ablation synthesis in solution (LASiS) method to synthesize the aforementioned graphitic-Al shell-core NPs. In recent years, LASiS has proven to be a green, facile, and inexpensive way to synthesize various nanomaterials with engineered interfacial properties for energetic and catalytic applications. The size distribution and composition of the nanoparticles can be manipulated by controlling the laser wavelength, laser flux, ablation time, solvent in which the metal target was immersed, and the laser beam’s focus. Finally, laser-assisted shock wave velocity measurements from the US ARL team confirmed that the carbon-coated Al NPs exhibit excellent exothermic and propulsive behaviors. We hypothesize that this is due to the tailoring of the particle sizes and the carbon shells, which in the future can be more specifically designed as fullerene-type shells to fine-tune the interfacial stresses, pressure, and consequently, the reactivity of these shell-core NPs

    A summer time series of particulate carbon in the air and snow at Summit, Greenland

    Get PDF
    Carbonaceous particulate matter is ubiquitous in the lower atmosphere, produced by natural and anthropogenic sources and transported to distant regions, including the pristine and climate-sensitive Greenland Ice Sheet. During the summer of 2006, ambient particulate carbonaceous compounds were characterized on the Greenland Ice Sheet, including the measurement of particulate organic (OC) and elemental (EC) carbon, particulate water-soluble organic carbon (WSOC), particulate absorption coefficient (σap), and particle size-resolved number concentration (PM0.1–1.0). Additionally, parallel ∌50-day time series of water-soluble organic carbon (WSOC), water-insoluble organic carbon (WIOC), and elemental carbon (EC) were quantified at time increments of 4–24 h in the surface snow. Measurement of atmospheric particulate carbon found WSOC (average of 52 ng m−3) to constitute a major fraction of particulate OC (average of 56 ng m−3), suggesting that atmospheric organic compounds reaching the Greenland Ice Sheet in summer are highly oxidized. Atmospheric EC (average of 7 ng m−3) was well-correlated with σap (r = 0.95) and the calculated mass-absorption cross-section (average of 24 m2 g−1) appears to be similar to that measured using identical techniques in an urban environment in the United States. Comparing surface snow to atmospheric particulate matter concentrations, it appears the snow has a much higher OC (WSOC+WIOC) to EC ratio (205:1) than air (10:1), suggesting that snow is additionally influenced by water-soluble gas-phase compounds. Finally, the higher-frequency (every 4–6 h) sampling of snow-phase WSOC revealed significant loss (40–54%) of related organic compounds in surface snow within 8 h of wet deposition
    • 

    corecore